Today we say farewell to Arjun Sharma & Suman Virdee. Arjun joined the lab as a second year volunteer, staying to perform a Biochem 3R06 research project. He has been very active in our Comprehensive Antibiotic Resistance Database project, co-developing our CARD*Shark text mining tools for computer-guided curation of literature in PubMed, pipelines for our clinical isolate genome sequencing work, and developing novel algorithms for predicting glycopeptide resistance from genome assemblies. He was the recipient of an IIDR Summer Student Fellowship and leaves the Biochemistry program to enter medical school at the University of Toronto. Suman joined the lab in the 4th year of the Biomedical Discovery & Commercialization program, performing her thesis research on RNA-Seq bioinformatics workflows in a collaboration between our lab and the laboratory of Dr. Kristen Hope (McMaster Stem Cell and Cancer Research Institute), extending her research into the summer by winning a CIHR Summer Undergraduate Research Award. Suman finished her degree and this September starts in the McMaster Master of Science in Global Health program. Bon chance Suman & Arjun!

 

 

Read more Comments Off on Farewell Arjun Sharma & Suman Virdee!

We haven’t been travelling much this year, but our collaborators have been busy!

Dearborn, D.C., A.B. Gager, A.G. McArthur, M.E. Gilmour, E. Mandzhukova, R.A. Mauck. 2017. How to get diverse MHC genotypes without disassortative mating. Presentation at the 2017 Annual Meeting of the Society for Integrative and Comparative Biology, New Orleans, Louisiana.

McLean, M., D. Theriault, M. Kelley, B.A. Lago, A.G. McArthur, & L. Williams. 2017. Role of Nfe2 and pro-oxidant exposure in inner ear development in zebrafish. Presentation at the Society of Toxicology 56rd Annual Meeting, Baltimore, Maryland.

Williams, L.M., B.A. Lago, A.G. McArthur, A.R. Raphenya, N. Pray, N. Saleem, S. Salas, K. Paulson, R.S. Mangar, Y. Liu, A.H. Vo, & J.A. Shavit. 2017. The transcription factor, Nuclear factor, erythroid 2 (Nfe2), is a regulator of the oxidative stress response during Danio rerio development. Presentation at the Society of Toxicology 56rd Annual Meeting, Baltimore, Maryland.

Winsor, G.L., C. Bertelli, K.K. Tsang, B. Alcock, A.G. McArthur, & F.S.L. Brinkman. 2017. Pseudomonas Genome Database 2017: Improved gene/AMR/VF/genomic island annotations, comparative genome analyses, and a platform for facilitating public health genomic epidemiology. Presentation at the 16th International Conference on Pseudomonas, Liverpool, United Kingdom.

 

Read more Comments Off on Conference Presentations!

Anastasia joins us & the IIDR for Summer 2017 from the Center for Genomic Sciences, UNAM, Cuernavaca, Mexico as part of her successful competition for a Mitacs Globalink Internship. Throughout the summer, she will be working on data and algorithm development for antimicrobial resistance genomic surveillance. Welcome Anastasia!

 

Read more Comments Off on Welcome Anastasia Koutoucheva!

Congratulations to this year’s crop of BiomedDC 4A15 thesis students for 8 month research projects well done! From left to right:

Suman Virdee – Developing a Galaxy based Pipeline for RNA-Seq Analysis in Stem Cell Biology

Kirill Pankov – The Cytochrome P450 (CYP) Superfamily in the Cnidarian Phylum

Jonsson Liu – Clinical virulence detection and Clostridium difficile clonality

Annie Cheng – Predicting Plasmid-Mediated Antimicrobial Resistance from Whole Genome Sequencing

Godwin Chan – Using the Galaxy Platform to Increase Accessibility for Structure Determination via Cryo-Electron Microscopy

Read more Comments Off on Completed 4th Year Biomedical Discovery & Commercialization Theses!

coverMcArthur AG & Tsang KK.

Ann N Y Acad Sci. 2017 Jan;1388(1):78-91.

The loss of effective antimicrobials is reducing our ability to protect the global population from infectious disease. However, the field of antibiotic drug discovery and the public health monitoring of antimicrobial resistance (AMR) is beginning to exploit the power of genome and metagenome sequencing. The creation of novel AMR bioinformatics tools and databases and their continued development will advance our understanding of the molecular mechanisms and threat severity of antibiotic resistance, while simultaneously improving our ability to accurately predict and screen for antibiotic resistance genes within environmental, agricultural, and clinical settings. To do so, efforts must be focused toward exploiting the advancements of genome sequencing and information technology. Currently, AMR bioinformatics software and databases reflect different scopes and functions, each with its own strengths and weaknesses. A review of the available tools reveals common approaches and reference data but also reveals gaps in our curated data, models, algorithms, and data-sharing tools that must be addressed to conquer the limitations and areas of unmet need within the AMR research field before DNA sequencing can be fully exploited for AMR surveillance and improved clinical outcomes.

Read more Comments Off on Antimicrobial resistance surveillance in the genomic age

d1-coverJia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman EL, Pawlowski AC, Johnson TA, Brinkman FS, Wright GD, & McArthur AG.

Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573.

The Comprehensive Antibiotic Resistance Database (CARD; http://arpcard.mcmaster.ca) is a manually curated resource containing high quality reference data on the molecular basis of antimicrobial resistance (AMR), with an emphasis on the genes, proteins and mutations involved in AMR. CARD is ontologically structured, model centric, and spans the breadth of AMR drug classes and resistance mechanisms, including intrinsic, mutation-driven and acquired resistance. It is built upon the Antibiotic Resistance Ontology (ARO), a custom built, interconnected and hierarchical controlled vocabulary allowing advanced data sharing and organization. Its design allows the development of novel genome analysis tools, such as the Resistance Gene Identifier (RGI) for resistome prediction from raw genome sequence. Recent improvements include extensive curation of additional reference sequences and mutations, development of a unique Model Ontology and accompanying AMR detection models to power sequence analysis, new visualization tools, and expansion of the RGI for detection of emergent AMR threats. CARD curation is updated monthly based on an interplay of manual literature curation, computational text mining, and genome analysis.

Read more Comments Off on CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database.

briony lagoThis month we say farewell to Briony Lago as she returns to her undergraduate studies in Chemical Biology at McMaster. Briony joined us as part of her Chemical Biology Co-Op program and worked on both human muscle atrophy and zebrafish toxicology transcriptome studies, as well a curation of the Comprehensive Antibiotic Resistance Database. Her publications are below, with more on the way. Briony was also awarded a 2016 IIDR Summer Student Fellowship for her work. Good luck Briony!

Read more Comments Off on Farewell Briony Lago!

header-aa7f836a57fbef4ef15c560ab4ce386fPawlowski AC, Wang W, Koteva K, Barton HA, McArthur AG, & Wright GD.

Nat Commun. 2016 Dec 8;7:13803.

Antibiotic resistance is ancient and widespread in environmental bacteria. These are therefore reservoirs of resistance elements and reflective of the natural history of antibiotics and resistance. In a previous study, we discovered that multi-drug resistance is common in bacteria isolated from Lechuguilla Cave, an underground ecosystem that has been isolated from the surface for over 4 Myr. Here we use whole-genome sequencing, functional genomics and biochemical assays to reveal the intrinsic resistome of Paenibacillus sp. LC231, a cave bacterial isolate that is resistant to most clinically used antibiotics. We systematically link resistance phenotype to genotype and in doing so, identify 18 chromosomal resistance elements, including five determinants without characterized homologues and three mechanisms not previously shown to be involved in antibiotic resistance. A resistome comparison across related surface Paenibacillus affirms the conservation of resistance over millions of years and establishes the longevity of these genes in this genus.

See more: McMaster Daily News

Read more Comments Off on A diverse intrinsic antibiotic resistome from a cave bacterium

genomecanadacolorThe McArthur lab and the Comprehensive Antibiotic Resistance Database are proud to have contributed to the Genome Canada – Canadian Food Inspection Agency Forum on Genomics and Antimicrobial Resistance. The two-day event brought together over sixty leading experts from academic, government, industry and commodities groups to address the challenge of AMR and discuss a path forward. A summary of the Forum and the Workshop Report are now online.

Read more Comments Off on Forum on Genomics and Antimicrobial Resistance – Workshop Report